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We show how our null field methods might be adapted to provide a sharp numerical
test for the radius at which a series expansion of a scattered field starts to diverge. On the
basis of our spherical and cylindrical physical optics approximations we develop an
inversion procedure, similar to conventional procedures based on planar physical
optics and like them needing scattering data over a wide range of frequencies, suitable
for totally reflecting bodies. We introduce another method, also based on spherical and
circular physical optics, whereby the shapes of certain bodies of revolution and
cylindrical bodies can be reconstructed from scattered fields observed for only two
closely spaced frequencies. We present computational examples which confirm the
potential usefulness of the latter method.
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98 R.H. T.BATES AND D.J.N. WALL

1. INTRODUCTION

This is the final paper in a series of three in which a computationally orientated approach to
diffraction theory is developed from the optical extinction theorem (extended boundary condi-
tion). In the first two papers (Bates & Wall 19774, b), which are henceforth referred to as (I)
and (II) respectively, we examined direct scattering methods. Here we discuss inverse scattering.

The general inverse scattering problem is posed as: determine the shape and constitution of a
scattering body, given the incident field and the scattered far field. De Goede (1973) shows that
the extinction theorem can be inverted to give an integral equation for the material constituents
of an inhomogeneous medium in terms of the field existing at the boundary of the medium.
Unfortunately, the kernel of the integral involves a propagator (Green’s function) which itself
depends upon the material constituents, so that the problem cannot be said to be reduced to a
form whereby the solution can be computed; nevertheless, this is a comparatively new approach
which, hopefully, will be developed further. The established inversion technique with the widest
application is Gel’fand and Levitan’s method (cf. Newton 1966) which has been most highly
developed by Kay & Moses (1961) and Wadati & Kamijo (1974); a method of wider potential
applicability has recently been suggested (Bates 19755).

In most situations of physical interest a fair amount of information concerning the general
shape and/or size and/or material constitution of the scattering body is available a priori. Because
of this, many specialized inverse scattering problems have been posed (cf. Colin 1972).

We consider only totally reflecting bodies here. Our main intention is to make clear both the
power and the limitations of our methods. Accordingly, we restrict our detailed analysis to
sound-soft bodies. The corresponding analysis for sound-hard bodies is only different in detail,
and we do not take the space to examine it explicitly.

In §2 we gather from (I) and (II) the formulae needed here. Since it is the shape of a body
which has to be determined from observation of its scattered field, it seems pointless to employ
coordinate systems especially suitable for bodies of particular aspect ratios. Consequently, we
only invoke the spherical null field method for bodies of arbitrary shape, and the circular null
field method, for cylindrical bodies. Section 3 outlines the relevance of the null field method to
the exact approach to inverse scattering based on analytical continuation (see Weston, in Colin
1972). Section 4 is concerned with an alternative to the usualinversion procedures based on planar
physical optics (cf. Bojarski, in Colin 1972). Like those who have gone before us, we need to know
the scattered field over a wide range of frequencies; but our technique seems to apply to a broader
class of bodies. The main contribution of this paper is introduced in § 5, where we show that the
shapes of certain bodies can be reconstructed from scattered fields observed at two closely spaced
frequencies. The computational examples presented in §6 confirm that useful results can be
obtained in situations of physical interest. In § 7 we attempt to assess the significance of our work
in relation to current research into the inverse scattering problem.

2. PRELIMINARIES

Figure 1 shows the surface S of a totally reflecting body of arbitrary shape embedded in the
three-dimensional space ¥, which is partitioned into ¥_ and 1, the regions inside and outside .§
respectively. A point O within 7_ is taken as origin for a spherical polar coordinate system. We
denote arbitrary points in 7" and on § by P, with coordinates (r, 8, ¢), and P’, with coordinates
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NULL FIELD APPROACH TO SCALAR DIFFRACTION. III 99

(r',0',¢"), respectively. We denote the points on § closest to, and furthest from, O by P;;, and
P} qx respectively. The radial coordinates of Py, and Pj,, are rp;, and ry,,, respectively. We
denote by 1, the parts of 7_ within which 7 < ry;,. We denote by 7', , the parts of 7', within
which 7 > 1}, The remaining parts of ¥_and 1", are ¥__ and 7, _ respectively, as is indicated
in figure 1. Extensions of this notation are defined in § 2 of (I) and § 2 of (II).

—————

Y ’rmtll

t—— - —

Ficure 1. Totally reflecting scattering body of arbitrary shape.

In conformity with § 2 () of (II) we introduce the spherical physical optics ‘illuminated’ and
‘shadowed’ parts of S, called §, and S_ respectively. These are carefully defined in (IT). Here it
is sufficient to remark that P’ §, if and only if the extension of its radial coordinate from O does
not again intersect . Refer to the points P, P; and P; lying on the straight, dashed line shown in
figure 1. We see that P e S, whereas P, PgeS_. We also need to partition S in another way, when
considering the behaviour of fields in ¥_; and ¥ _. We define

§=(r) (" >7) }

S ~ §=(r) U S*H(r), Peyv)(ﬂ<”.

(2.1)
Note that $—(r) is empty when r > r,,,., and $*(r) is empty when r < r};,.

We now recall (2.5), (2.8) and (2.10) all of (I) and we abstract certain formulas from § 2 (a)
of (I). The sources of the monochromatic field —denoted by ¥, = ¥,(r, 0, ¢, k) —incident upon
the body are confined to 7', ,. So, we can write ¥, as

o 1 . . ,
Vo= X X ¢utk)jilkr) Pi(cosO) exp (jg), 0 <7< fax (0< ¢ <2m,0<0 <), (2.2)
=0j=—
where the j(+) are spherical Bessel functions of the first kind. The a;; = g;,(k) are expansion
coefficients which determine the precise form of 1, and £ is the wave number. The time factor
exp (iwt) is suppressed. The normalization constants ¢; ; are given by

{=Nr2+1)
)l

;= —ik

(2.3)
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100 R.H. T.BATES AND D.J.N. WALL
The scattered field ¥ = ¢(r, 0, @, k) can be written as

V= 5 B olBialn Rk + Bl I (0] Pilcos0) exp () (PeT), (24

where, for /{0 - oo} and je{—1 - [},

By (r,b) = fsﬁm f S(r1y ) cof (") Pi(cos 0') exp ( — i) ds, (2.5)

where f denotes either — or +, and A®(+) denotes the spherical Hankel function of the second
kind, and wt=j and w—=h? (2.6)

and f (7, 7,) is the density of reradiating sources induced in the surface (in which 7, and 7, are
convenient, orthogonal, parametric coordinates) of the sound-soft body. Note that ¥, as given
by (2.4), satisfies the radiation condition at infinity because $=(r) is empty for 7 > rp,,. In
conformity with notation introduced in (I) and (II) we write

Bjy(r, k) = bja(k) 7 < ﬁnin,} (2.7)
B;fz(’, k) = b;l(’“) r> rl,na,X' '

We can compute f = f(7,,7,) by solving the null field equations:
bja(k)+a;; =0 (le{0—> 0}, je{—1>1}). (2.8)

For the approximate approaches developed in §§ 4, 5 we need the form of the spherical physical
optics surface source density when the incident field is characterized by

a; (k) =0 (1>0) (2.9)
the physical implications of which are discussed in the Appendix. The normalization
ao’o(l> = —41'Ci (2.10)
in convenient. It follows from §2 () of (II) that the spherical physical optics surface source
anSity is j""(a;’ ¢/) — 0’ PIES_
- 112—%1—“’—(;,—)) exp (ikr), P'eS,, (2.11)
where 4(0', ¢') = ds/d0’ d¢’. Note that we have used the formulae
PS(cos®’) =1 and AQ(kr') = (i/kr') exp (—1ikr"). (2.12)

We recall from §2 () of (IT) that the coordinates ¢’ and 6’ span S, single-valuedly and con-
tinuously throughout the ranges [0, 2rr] and [0, ] respectively. So, if we replace f(-) in (2.5) by
J(+), and it we note (2.1) and (2.7), see that

/cfﬂfzﬁr'exp (ikr") jy(kr") P{(cos 0') exp (—ij@") sin (0") dp’ A0’ =~ by (k)

0 (le{0 > oo}, jef—I>0) (2.13)
on account of (2.6) and (2.11). We use an ‘approximately equals’ sign in (2.13) because we have
invoked the physical optics surface source density rather than the exact surface source density,
but this is the only approximation implicit in (2.13). We define

BO,p0) = 3 @+ 01 5 T8 Pcosd) exp () (2.14)
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NULL FIELD APPROACH TO SCALAR DIFFRACTION. III 101

which, when combined with (2.13), leads to

k f : f :"r'exp (ikr'[1+cos (0)]) sin (¢") dg’ 46" ~ E(0, b, k) (2.15)
because § (21 +1)iPP(cos O) j,(kr') = exp (ikr’ cos O) (2.16)
=0
and Pl(cos ©) = é g_l_ ; Pj(cos0) Pj(cos0') exp (ij[p —¢']), (2.17)
j=-1
where (cf. Abramowitz & Stegun 1968, Chs 8 and 10)
cos (@) = cos (0) cos (0') +sin (0) sin (0") cos (¢ —¢'). (2.18)

(a) Cylindrical body
When neither the fields nor the cross section of the body exhibit any variation in the direction
perpendicular to the plane of figure 1 then § can be replaced by C, which is the cross section in a
particular plane denoted by . Cylindrical polar coordinates are used to identify P and P’, i.e.
(p,¢) and (p’, ¢") respectively. The previous notation is modified accordingly.
We now list formulae needed later. It is, however, worth referring to §2(c) of (II). The
incident field is written as

Yo = (1) 3 ealaf(b) cos (mg) +a% (k) sin (m$)] S (kp) (0 < p < plagss 0 < < 21,
m=0
(2.19)
where the sources of ¥, are confined to parts of 2 for which p < pp.x- The Neumann factor
€y = 1form =0, bute,, = 2 for m > 0. We write the scattered field in the form

Y= (-1 Z €07 (k) cos (m@) + 03,0 (k) sin (mg)] HP (kp), Pef,,, (2.20)
where b (k f F(C) J,(kp') X(mg') dC  (me{0 - o0)), (2.21)

where the superscript x denotes either e or o, and ¥° represents cos, and ¥° represents sin, and
F(C) is the surface source density.
When the incident field is characterized by

an =0 (m>0) and =0 (2.22)
and the normalization a§ = — (8mi)® (2.23)
is made, the circular physical optics surface source density becomes
F(¢") =0, PeC_

~ 39
~dc

(kp")texp (ikp'), PeC,, (2.24)

where the ‘approximately equals’ sign is used because there is no exact formula of the same kind
as the second one in (2.12) for H§? (kp). However, if kpp;, > 2m, the formula

HP(kp') = (i2/nkp’)¥ exp (—ikp') (2.25)

is less than 2 9, in error. The formula corresponding to (2.13) is

B [ () exp () Julh) WX(ng) A B () (mef0>ce)). (2:20)

13 Vol. 287. A.
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102 R.H. T.BATES AND D.J.N. WALL

We define E(¢,k) = Z Eni™[ b8 (k) cos (m) + b0 (k) sin (m¢)], (2.27)

m=0

which, when combined with (2.26), gives
2m
k%fo (p")2 exp (ikp'[1 +cos (¢ — ¢')]) d¢’ ~ E(4, k) (2.28)

because Z €pimcos (m[¢p—@']) J,,(kp') = exp (ikp’ cos (¢ — ¢")). (2.29)

(b) Inverse scattering problem
Because of (2.1) and the sentence following it, and because of (2.4) through (2.7), it follows that

3 6yabuah) P (k) Pl (c0s0) exp (i), Pe T (2.30)
joe
The equivalent formula for cylindrical bodies is (2.20). The available data for the inverse
scattering problem are the scattered far field and the incident field throughout ¥_u 7, _ (it may
also be known within a large part of ¥, ,, but this is strictly unnecessary). The incident field is
characterized by the complete set of the a; ;(k), or the a,,(k) for cylindrical bodies, or as many of
them that have magnitudes exceeding a threshold set by the specified error permitted in the
final solution to the problem. In the far field, the spherical Hankel functions appearing in (2.30)
can, by definition, be replaced by the leading terms in their asymptotic expansions (cf. Abramo-
witz & Stegun 1968, Ch. 10). It follows that

—1 o 1 .
p=-CRW S 5 (e b Rleos) exp (i), Pely (231

J

RY

1

where 13,, is the partof 77, , far enough away from the body to be inits far scattered field. Given ¥
in the far field, for a particular r and for all ¢ and € in the ranges [0, 2r] and [0, ] respectively, the
complete set of b;,;(k) (or as many of them that have magntiudes exceeding an appropriate
threshold) can be immediately obtained on account of the orthogonality of the functions
Pj(cos0) exp (ij¢). So, inspection of (2.30) indicates that, using the available data, ¥ can be
immediately computed anywhere within 7, ,. The problem is to reconstruct S.

Reference to (2.14) confirms that the available information concerning the scattered field is
contained in E(6, ¢, k). For cylindrical bodies the equivalent quantity is E(¢, k).

To recapitulate; we can pose the inverse scattering problem as: find §, given the 4; ;(£) and the
bj1(k), or equivalently, given E(0, ¢, k). For cylindrical bodies the problem is: find C, given the
ay (k) and the b}, * (k), or equivalently, given E(¢, k).

3. FORMALLY EXACT APPROACH

The uniqueness of analytical continuation ensures that (cf. Bates 1975 )

S ubfah) (k) Pilcos0) exp i), PeT, (3.1)

j=

Y=

4

foes
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NULL FIELD APPROACH TO SCALAR DIFFRACTION. III 103

where 7, is the part of 1° throughout which the right-hand side (r.h.s.) of (3.1) is uniformly
convergent. It follows necessarily from (2.4) through (2.7) that

r,>7,.. (3.2)
When the scattering body and the incident field are such that ¥, > 7,_ then the inverse

scattering problem can be solved exactly, straightforwardly. The standard boundary condition
for sound-soft bodies is Y+, =0, PeS. (3.3)

Since ¥, and the b;,(k) are given (refer to § 2 (5)), r.h.s. (3.1) can be computed. It follows that we
can easily find, by computation, the points P” € ¥ where ¥ + ¢, vanishes. Ordinary interference
can cause the total field to vanish at points, along lines and even along surfaces none of which
coincide with §. So, the points " must be found for sufficient wave numbers to ensure that the
true surface is mapped out (only those P” that reappear for all wave numbers are accepted as
belonging to ). This approach seems to have been initiated by Weston & Boerner (1969); some
of its computational consequences have been investigated by Imbriale & Mittra (1970).

Suppose ¥ is given, or observed, for all § and ¢ at r = r,, where 7y > 1, An infinity of source
distributions can be constructed to give rise to ¥ for 7 > 7, (cf. Sleeman 1973). However, Millar
(1973, note also his previous work which he references in this paper) has shown that thereis a
unique closed curve in £ (called the hull of the singularities, which is necessarily included in £2_)
within which it is impossible to construct source distributions which could give rise to . Millar
has also shown that any particular series representation of ¥, of the form of (2.20), has unique
singularities, because the series has a definite radius of convergence, i.e. uniform convergence
occurs only if 7 is greater than this radius. So, the aforementioned infinity of source distributions
must lie between the circle of radius 7, and the hull of the singularities.

The hull of the singularities is found by successive applications of the addition theorem for
Bessel functions, in order to construct series similar to (2.20) but for different coordinate origins
(cf. Bates 19754). Colton (1971) carries through a similar analysis for axially symmetric solutions
to the Helmholtz equation. There seems to be no good reason for doubting that the field scattered
from a body of arbitrary shape has a unique hull of singularities, which must be included in 7 _.
When this hull is included in 1}, it is clear that r.h.s. (3.1) can be used to represent ¥ in (3.3)
for all P’ €S. When the hullintersects 7_, thenr.h.s. (3.1) is not uniformly convergent throughout
Y_, and some analytic continuation procedure (such as the employment of addition theorems)
must be devised to solve (3.3) for all P’ .

The scattered field must be well behaved throughout 7', _. Consequently, the addition theorems
for spherical wave functions can be invoked to continue r.h.s. (3.1) uniquely throughout ¥, _, in
much the same way as these theorems are employed in § 3 of (II), as Weston, Bowman & Ar
(1968), Weston & Boerner (1969) and Imbriale & Mittra (1970) have investigated in detail.
Ahluwalia & Boerner (1973, 1974) and Yerokhin & Kocherzhevskiy (1975) have extended the
method to those sorts of penetrable bodies that can be usefully characterized by surfaces
impedances.

Multiple use of addition theorems is time-consuming computationally, and care is needed to
prevent errors accumulating. Also, one is trying to discover the shape of the body, so that it is by
no means obvious which is the best position for the new coordinate origin when one is making a
particular application of an addition theorem. Consequently, there are severe difficulties
associated with analytical continuation methods, and these difficulties are accentuated by the
usual problems with numerical stability (Cabayan, Murphy & Pavlasek 1973).

13-2
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104 R.H.T.BATES AND D.J.N. WALL

Analytical continuation methods would be easier to use if a sharp test could be devised for
estimating the minimum value of 7 for which r.h.s. (3.1) is uniformly convergent. Inspection of
(2.4) through (2.7) reveals that

V= 2 5 oulBialn Bikr) — Bl () 0 () + Bja(8) B2 (k)] Pi(cos0) exp (i), e,

o (3.4)
where, for /e {0 - oo} and je{—! > [},
Bir(sh) = [ [ St Pltcost) exp (~ig) (3.5
It follows necessarily from (3.1) that
li}_él%‘,zﬂj,z(’, k) P{(cos0) exp (ijp) = 0, Pel,, (3.6)

where, for [e{0 — oo} and je{—1 [}
Bia(rs k) = Bi(r, k) ji(kr) — Biy (r, k) h® (kr). (3.7)

The first value of r which will be found to satisfy (3.3) is 7,,,.. Consider a particular value of r,
say 1y, less than 7p,,. If all the points on S, for which 7’ > 7, are found from (3.3) then S=(r,) is
known, which means that f(7,,7,) can be computed for all P’eS=(r,) by using (2.8) or (I).
Reference to (2.5), (3.5) and (3.7) of this paper then confirms that f; ;(,, k) canbe calculated for
le{0 - oo} and je{—! - I}. For each r = r,, Lh.s. (3.6) can be computed. If there is found to be
a value of r, which we denote by 7y, for which

|Lh.s. (3.6] > threshold, 7 < 7y, (3.8)

where the threshold is related to computational round-off errors and to the quality of the data,
then we can assume that r.h.s. (3.1) is not uniformly convergent for r < r4.;.

Similar reasoning to that developed in the previous paragraph has been previously presented
for cylindrical bodies (Bates 1970). In this earlier analysis we suggested that analytical continua-
tion would allow us to recover the whole of S, without having to use addition theorems. This is
sound theoretically because the non-converging part of r.h.s. (3.1) is exactly cancelled by the
non-converging part of L.h.s. (3.6), for all r < 74,;. But we have never found a computationally
satisfactory way of taking advantage of this, which is not surprising in the light of the results of
Cabayan ef al. (1973). However, we feel that the method for testing for 7y described in the
previous paragraph is computationally viable, because L.h.s. (3.6) is necessarily zero for r > ;.

4. APPROXIMATE APPROACH — ALL FREQUENCES

The positions of scattering bodies in space can be determined with useful accuracy in many
sorts of situation by conventional radar and sonar techniques. The precision of the position
measurement increases as the bandwidth of the transmissions is increased. Sophisticated systems
have been developed for estimating the shapes, as well as the positions (and the velocities of
moving bodies), of the bodies (cf. Bates 1969). Several estimation procedures involve various
Fourier transformations of the scattered field, which is assumed to be close to that predicted by
planar physical optics (cf. Bates 1969; Lewis 1969). Theoretically, the scattered field must be
known for all frequencies, or wave numbers.
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NULL FIELD APPROACH TO SCALAR DIFFRACTION. III 105

We present here an alternative inversion technique, for which we also require the complete
scattered field at all frequencies. We base our procedure on spherical physical optics, which like
planar physical optics becomes increasingly inappropriate as the wave number increases beyond
a certain limit, corresponding roughly to where the largest linear dimension of the body equals
the wavelength. However, as follows from the analysis developed in § 2 (4) of (II), we can claim
that, when (2.9) of this paper applies, the form of the physical optics surface source density used
by us is in general more accurate than the forms employed in previously reported inversion
methods.

Multiplying (2.13) by (2/nk3)3% and integrating with respect to £ from 0 to co gives (cf. Watson
1966, § 13.42)

1’J‘ f ')t Pf(cos0') exp (—ij¢p’) sin (0') d¢p’ A0’
~ (2fim) (I +3) f:/c—%b;t,(k) Ak (e{0—>oo) j{—l>0).  (4.1)

Examination of Lh.s. (2.13), in the limit as £ — 0, indicates that r.h.s. (4.1) exists. Since 7’ is
a single-valued function of 0’ and ¢’ over S, we see that (4.1) leads immediately to

(0,9~ (20 S (202 (=it 3 I pcos )
1=0 it (l+g)!

xexp (i) [ HMpb Ak (42)
0
because

13 ({=j)! d(¢p—¢")6(0-0")
_ngg(21+1)]EZWP(cosa)P(coso)exp{y(qs PN="mm &Y

where 6(+) denotes the Dirac delta function.

We obtain an estimate of the shape of S, from (4.2).

It is worth noting that (4.1) and (4.2) emphasize the necessity of defining physical optics
surface source densities over parts of § which can be described single-valuedly by convenient
coordinate systems. If 7" were not necessarily a single-valued function of " and ¢’, we could not
necessarily identify r.h.s. (4.2) with a single value of ().

(a) Cylindrical body

Integrating (2.26) with respect to & from 0 to co gives (cf. Abramowitz & Stegun 1968, formula
11.4.12)

i f T e % 1, f TR () dk - (mef0 o), (4.4)
bexp (—in/8) I(}) T
where Jn = Zoxp (]’(m{{i) I(F(?i ) (4.5

I'(m

)

and I'(+) denotes the gamma function. As p’ = p’(¢’) is single-valued over C,, (4.4) leads
immediately to

(P (BN~ =

2n m=0

because — Z €ncos{m(p—¢")} =0(p—¢"). (4.7)

)‘m.ﬁnfwk‘i‘[b#(k) cos (mg’) + by° (k) sin (mg’) ] dk (4.6)

We obtain an estimate of the shape of C, from (4.6).
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(6) Discussion

The formulae (4.2) and (4.6) can be thought of as a development of the approach initiated by
Freedman (1963) for sonar and by Kennaugh & Moffatt (1965) for radar. The chief weakness of
our formulae from a practical point of view is that they require the scattered field to be observed
over an indefinitely large range of frequencies. A significant relaxation of this requirement should
be obtained before any extensive computational investigation is embarked upon. Young’s (1976)
impressive practical implementation of Kennaugh & Moffatt’s approach shows that it is worth
attempting to find appropriate modifications to the analysis presented here.

5. APPROXIMATE APPROACGH — TWO FREQUENCIES

We present a new inversion procedure applicable to bodies of revolution and cylindrical
bodies. There are two significant improvements over the methods discussed in § 4. First, we only
need to observe the scattered field for two closely spaced frequencies. Secondly, these frequencies
can be high enough for spherical physical optics to be appropriate, provided that the shape of the
scattering body is suitable (i.e. it is such that there is little multiple scattering). In fact, the higher
these frequencies are the more accurately can details of body shape be recovered.

We find it convenient to introduce the notation

Ve = Ov[0x, (5.1)

where v is any scalar function and « is any variable.

(a) Body of revolution
We consider a body of revolution whose axis coincides with the polar axis of the spherical
coordinates introduced in § 2. Using these coordinates we see that
7y =0 (5.2)

which implies that E(0, ¢, k) is itself independent of ¢, so that all available information is
contained in £(6, 0, k).

We consider values of £ high enough for the integrals in (2.15) to be evaluated usefully by
stationary phase. Because of (5.2), the integrals over ¢’ and 6’ can be treated separately. It is
convenient to deal with the former first. When ¢ = 0, the phase of the integrand is stationary
when ¢’ = 0 and ¢’ = m. Proceeding in the usual way (cf. Jones 1964, § 8.5) we find from (2.15)
and (2.18) that

E(0,0,k) ~ (—i2kn/sin 0)%J: (r'sin@’)% exp [12kr’ cos? {(0 —0') [2}] dO”
+ (12km/sin 0)15]: (r'sin0’) Y exp[i2kr’ cos? {(0 + 6")[2}] 0. (5.3)

The phases of the two integrands in r.h.s. (5.3) are stationary when
cos{(0'F0)[2} =0 (5.4)
and tan{(0'76)/2} = (¢, 0)Jr' (0, 0), (5.5)

where the minus and plus signs apply to the first and second integrands respectively. Because the
body is, by definition, symmetrical about the polar axis, we see thatry = O when8’ = 0or 6’ = r.
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Consequently, when 6 = 0 or 6 = &, both (5.4) and (5.5) give stationary phase points for both
integrands at @ = 0 and 6 = n. When 0 < 0 < =, the only solution to (5.4) which lies within the
range [0, n] of the integrands in (5.3) is

0 =n—0 (5.6)
which applies only to the second integrand.

We cannot expect to obtain useful results from (5.3) when the surface of the body has
sufficiently deep concavities that appreciable multiple scattering occurs, because (5.3) is based
on physical optics which is not capable of predicting multiple scattering effects. Concavities in
the body’s surface are related to the occurrence of multiple stationary phase points in the inte-
grands on r.h.s. (5.3). We must assume that each integrand possesses only one stationary phase
point. The one for the first integrand is given by

tan {(0" —0)/2} = r, (0", O) (0", 0) (5.7

which we assume has itself only one solution for 0 < 6’ < . The one for the second integrand is
given by (5.6). We must assume that |r, (6, 0)| is never large enough that there is a solution to
(5.5) for 0 < 0’ < m, when the plus sign is taken. We can only obtain a recognizable recon-
struction of the shape of the body when it is such that our assumptions are valid.

The recovery of 7' (6, 0) from (5.3) is very similar to the recovery of p’(¢’) from the equivalent
equation for a cylindrical body, which is discussed in § 5 (b) below. Since the illustrative examples
which we present in § 6 concern cylindrical bodies, we feel that it is better to give the detailed
analysis in the following sub-section.

(b) Cylindrical body

Stationary phase points of the integrand in (2.28) occur when

cos {(¢' — #)[2} = 0 (5.8)
and tan {(¢" — ¢)/2} = py(¢")[p"($"). (5.9)
There is one solution to (5.8) for 0 < ¢’ < 2x:
¢’ =¢+n (0<¢<m),
=¢—-n (n<¢<2n). (5.10)

For the same reasons as those we have previously given in the penultimate paragraph of § 5 (a),
we must assume that there is only one solution to (5.9) for 0 < ¢’ < 2n. We say that

=9 (5.11)

represents the solution to (5.9). We find it convenient to define
p=p(9); P=py@); P=pyyp) (5.12)
When (5.9) through (5.12) are invoked, the stationary phase approximation to (2.28) reduces

to two integrals which correspond, respectively, to the first and second integrals on r.h.s. (5.3).
The usual technique (cf. Jones 1964, § 8.5) gives

exp (i2p) cos? {(g — 9)/2)
2E (¢, k) —1 ~ ~— - . 5.13

D =L =3 (plp) ~ T cos (o~ 9172} (5:12)

Inspection of r.h.s. (5.13) reveals no obvious, direct way to recover p as a function of p, and ¢ as

a function of ¢. However, the exponential is of modulus unity and, which is more important, it is
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the only factor on r.h.s. (5.13) that depends on £. This suggests that we should investigate the
modulus of the partial derivative of E(¢, k) with respect to k. After some algrebraic manipulation
we find from (5.9) and (5.11) through (5.13) the (approximate) formula

PI2E(¢, k) — 1] = [1+ (p[p)*] Ew(¢, k). (5.14)

Suppose that we observe, or are given, E(¢, k) for two closely spaced wave numbers, (£ +¢€) and
(k —e¢) say. If e is small enough, we can say that

(k) ~ [E(, k+6) - E(, k—c)] /2 (5.15)
and E($,8) ~ [E(§,k+6) + E(, k—c)])2 (5.16)

to within some prescribed tolerance.

The formula (5.14) can be looked on as a differential equation for recovering p = p’(¢) and
¢ = ¢(¢). Aninitial condition is required to start the solution. We look for values of ¢ about which
E(¢, k) is locally even, in the following sense. If ¢, is such a value of ¢ then

[E(Bo+ D, k) — E(By— 3, k) ]| E(¢o, £)

is smaller than some prescribed threshold over a range of &. We denote the width (extent, length,
support) of this range by R. We find the value of ¢, for which R is greatest, and call it ¢,. We
postulate that for the point P’ € C whose angular coordinate is ¢, the centre of curvature lies on
the line OP, or on its extension. This is equivalent to assuming that pj(f,) = 0, which when
combined with (5.9), (5.11) and (5.12) gives

p=¢ when ¢=d, (5.17)

This is sufficient to start a numerical solution to (5.14) for ¢ = ¢(¢)) and p’ = p’(p). The latter
describes the shape of the body, as the definitions (5.12) show.

6. APPLICATIONS

We present examples of the reconstruction, by the inversion procedure described in § 5 (4), of
the cross sections of the cylindrical bodies shown in figure 2. The scattered fields, on which the
inversion procedure operates, were computed using our rigorous null field methods, themselves
developed in (I).

In all examples we take e = 0.005, (6.1)

where ¢ is introduced in (5.15) and (5.16). For all the bodies shown in figure 2
$o=0 (6.2)

where @, is defined in the final paragraph of § 5 (b). The symmetries of all the bodies are such that
one quarter of C completely defines the rest of it. Accordingly, we only show our reconstructed
cross sections for ¢’ in the range [0, 377]. Note that this is equivalent to ¢ being restricted to the
range [0, 3x], on account of the symmetries of the bodies and the definition (5.11) of ¢ in terms
of ¢’. We think it more graphic to relate our results to the wavelength A of the field, rather than
to its wave number £ or its frequency w/2n. In terms of £, we write A as

A = 2n/k. (6.3)
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Since circular physical optics is exact for circular cylinders, we can reconstruct such cylinders
perfectly. The greater the departure from circularity of the cross section of the body, the more
difficult it is for us to reconstruct it accurately. Figure 3(a) shows that we can reconstruct
elliptical cross sections of moderate ellipticity almost perfectly, even when the wavelength is only
a little less than the smallest linear dimension of the body. Figure 3 () confirms that the error in
reconstructing the cross section tends to increase with the ellipticity.

The results presented in figure 4 illustrate two features of our (and any other, for that matter)
reconstruction procedure. First, keeping constant the ratio of A to the smallest linear dimension

o
IS

(@) -

b

Ficure 2. Cylindrical scattering bodies: (a) square cylinder with rounded corners;
(b) elliptical cylinder; (¢) cylinder with concavities.

t (a)

0O
Ficure 3. Reconstruction of the cross section of an elliptic cylinder (refer to figure 2b). (a) b = 0.8a; , boundary
curve C; a, reconstructed points when a = 1.5A and a = 2A. (b) b = 0.65a; ——, boundary curve C; ———,

reconstruction of C when a = 2A.

14 Vol. 287, A.
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110 R.H.T.BATES AND D.J. N. WALL

Ficure 4. Reconstruction of the cross section of a square cylinder with rounded corners (refer to figure 2a).
(a) t = 0.5a; , boundary curve C; ———, reconstruction of C when a = 2A. () ¢ = 0.25a; , boundary
curve Cj ...... , reconstruction of C when a = 1.51; ———, reconstruction of C when a = 2A. (¢) ¢t = 0; y
boundary curve C; ...... , reconstruction of C when a = 1.51; ———, reconstruction of C when a = 2A.

e -
-
-

(0] T - TTx
F1cure 5. Reconstruction of the cross section of a cylinder with concavities (refer to figure 2¢). (¢ = 0.5a,
t, = 0.54); , boundary curve Cj ...... , reconstruction of C' when a = 2A; ———, reconstruction of C when

a = 2.5A.
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of the body, the accuracy of reconstruction improves with the smoothness of the cross section —
note that the differences between the dashed and full curves tend to decrease as we go from
figure 4 (¢) to figure 4 (b) to figure 4 (a). The second feature is that the error in reconstruction
decreases with the ratio of A to the smallest linear dimension —note the differences between the
dotted, dashed and full curves in figures 4 (5) and (¢).

A major problem with all shape reconstruction procedures, whether rigorously based or
approximate, is to reproduce accurately concavities in scattering bodies. The reconstruction
errors associated with the dashed curve in figure 5 are appreciably greater than those associated
with the dashed curve in figure 4(c), even though the wavelength is shorter for the former.
Nevertheless, the reconstructions shown in figure 5 are encouraging and seem to be improving
with decreasing wavelength. We found it inconvenient to investigate this trend in detail because
of the large c.p.u. (central processing unit) times needed for calculating the scattered field
accurately when a/A > 5.

Given the scattered field, the c.p.u. time needed to compute each of the reconstructed cross
sections shown in figures 3—-5 was close to five seconds.

7. CONCLUSIONS

We suggest that in future research into analytical continuation techniques it may be worth-
while investigating and extending the test, developed in § 3 for determining numerically where
a series expansion of a scattered field begins to diverge.

Theoretically, like previously reported methods, the method introduced in §4 requires the
scattered field to be known at all frequencies. Any attempts to introduce modifications designed
to permit limited scattering data to be used must overcome the numerical instabilities noticed by
Perry (1974). However, Young’s (1976) results strongly suggest that this approach is worth
pursuing further.

We feel that the inversion procedure which we present in § 5 and illustrate in § 6 is a significant
improvement on previously reported techniques because it only requires that scattering data be
available at two closely spaced frequencies, high enough for the wavelengths to be short enough
to be compared with the linear dimensions of the scattering body. Even though our inversion
procedure is based on the principle of stationary phase, and might therefore be expected only
to work satisfactorily for very short wavelengths, the results presented in § 6 indicate that we can
get useful results when the wavelength is comparable with the smallest linear dimension of the
scattering body.

The results presented in figure 5 emphasize the importance of perfecting accelerated methods
of solving direct scattering problems, e.g. the technique introduced in § 3 of (III). It would then
be possible to compute economically the scattered fields from moderately large (in terms of the
wavelength) bodies. This would allow a proper evaluation to be made of inversion methods,
because it is such bodies which are usually of most physical and technical interest.

The formulae which we derive in § 5 are reminiscent of those reported by Keller (1959), (and
later examined computationally by Weiss (1968)) who based his arguments on classical geo-
metrical optics. Because we employ physical optics we are able to handle diffraction effects, which
tend to introduce numerical instabilities when Keller’s (1959) method is tried. It is perhaps worth
remarking here that nobody has yet found a useful, general way of applying Keller’s geometrical
theory of diffraction to inverse scattering problems.

14-2
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112 R.H.T.BATES AND D.J.N. WALL

The methods based on planar physical optics (cf. Lewis 1969) can be adapted to permit
estimates of body shape to be obtained by Fourier transformation of monochromatic scattered
fields (cf. Bates 1969). However, the Fourier transformation relations only apply over limited
ranges of aspect angles, which means that the scattered fields have to be partitioned into non-
overlapping ranges of scattering angles. It is rarely clear how best to do this partitioning and it is
always difficult to fit together the shapes obtained by Fourier transforming the individual parts
of the field scattered from a particular body. All this emphasizes the convenience of the method
we introduce in § 5, and it confirms that a worthwhile research problem is to extend the method
so that it can be applied to asymmetrical non-cylindrical bodies.

We have found nothing useful to say concerning the uniqueness of our results. This is a
mathematical shortcoming, but it is of little general scientific significance. The existing exact
approaches to inverse scattering are so complicated and require such large quantities of difficult-
to-measure data, to errors in which they are extremely sensitive, that it is difficult to believe they
will ever be used in practice. The established approximate techniques are of very limited
applicability. What are needed are computationally manageable improvements (such as we
have introduced here) to known approximate methods. It is likely that uniqueness questions
concerning these methods can only be answered heuristically, by computational experience.

One of us, D.]J.N. Wall, acknowledges the support of a New Zealand University Grants
Committee Postgraduate Scholarship.

APPENDIX

It is virtually impossible to arrange physical sources such that (2.9) holds. However, it is
possible to arrive at (2.9) by averaging over several incident fields.

A convenient point within the source distribution producing the incident field is chosen as a
local origin, denoted by O,. We place O, at a number, N say, of positions the nth position being
denoted by O,,, all of which are at the same radial distance from the point O of figure 1. We,
always maintain the same ‘aspect’ of the incident source distribution, in the sense that the line
OO, can be thought of as a rigid rod glued into the incident source distribution, which is itself
rigid. The rod OO, can be taken to possess a universal joint at O, thereby allowing O, to be moved
to the points Oy,,.

When O, is positioned at each of several of the O,,, we observe the number, N, say, of scattered
partial waves that are of significant amplitude. We denote by N’ the largest of the N,. We then

choose N such that
N=N' (A1)

When O, is at O, we can write the incident field as Yy = ¥y(r, 0, 9, ¢, §,,, k) where ¥, and ¢,
are the angular coordinates of O,,, in the spherical polar coordinate system (with origin O)
introduced in §2. The definitions introduced in this Appendix ensure that the error in the
approximate relation

T 20001090 b, 60 B) % 2 [ [T 0,0, 4, 5in (0) dp a0 (a2)

n=1


http://rsta.royalsocietypublishing.org/

'\
/N

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

’\
A \
A

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS

L\

y/aa
Y |
A

0\

SOCIETY

A

OF

A

9

OF

Downloaded from rsta.royalsocietypublishing.org

NULL FIELD APPROACH TO SCALAR DIFFRACTION. III 113

is of the same order as the sum of the scattered partial waves whose amplitudes are considered too
small to be significant. Inspection of (2.2) indicates that

%tf:f:w Yol(r,0, b, k) sin (0) dp dO = —ikay (k) jo(kr) (A3)

which is equivalent to (2.9).
When O, is at O, we can write the scattered field as ¢ = ¢ (r,0,9,, ¢, ¢,,, k). To the same
level of approximation as before, we see that

1 N
X Z l”j,lb;'tl(k) h§2) (k?‘) Plj(COS 0) CXP (1]¢) X 'J]i_] 21 ’ﬁ(’, 0> "9‘11,: ¢: ¢m k)a P€T++a (A 4)
)= n=

@
h)
1=0

where the bj;(k), of which only N have significant amplitude, characterize the scattered field
when the incident field is characterized by (2.9).
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